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1 Introduction

The motivation behind studying Dynkin diagrams is to study the structure of semisimple

Lie algebras, that is direct sums of simple Lie algebras. Dynkin diagrams in some sense

encode a lot of the structure and properties of semisimple Lie algebras. I will be following

the treatments found in Fulton and Harris [1] and Taylor’s Lie Group notes [2].

First we start off with a couple of preliminary definitions.

Definition 1. A simple Lie algebra g is a nonabelian Lie algebra with nonzero proper

ideals.

A Lie algebra g is called semisimple if it is a direct sum of simple Lie algebras.

Definition 2. A Cartan subalgebra h of a Lie algebra g is a nilpotent subalgebra such

that [X, Y ] ∈ h for all X, Y ∈ h.

Definition 3. We define the Killing form B on g by

B(X, Y ) = tr(ad(X) ad(Y )).

B defines a symmetric bilinear form on g.

2 Roots of a Lie algebra

Now given a semisimple Lie algebra g, a Cartan subalgebra h ⊂ g, let us recall what a root

system on g with relative to h is. An element α ∈ h∗ is called a root if α ̸= 0 and there

exists Xα ∈ g such that

[H,X] = α(H)Xα

for all H ∈ h. Let us call the set of all the roots R. These roots span a real subspace of h∗

on which the Killing form B is positive definite; call the subspace E = spanR R. On E, we
have a positive definite symmetric bilinear form B, so it makes sense to talk about angles

between vectors of E, defined via the Killing form. That is

B(u, v) = cos θ
||u||
||v||

.

The root system R has the following properties:
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(1) R is a finite set spanning E.

(2) If α ∈ R, then −α ∈ R, but no other scalar multiple c · α ∈ R for c ̸= ±1.

(3) For α ∈ R, the reflection Wα along the hyperplane α⊥ maps R to itself. In fact, Wα is

given by

Wα(β) = β − 2
(β, α)

(α, α)
α.

(4) For α, β ∈ R, the number

ηβ,α = 2
B(β, α)

B(α, α)
∈ Z.

For simplicity of notation, we are going abbreviate B(· , ·) by (· , ·) and ηβ,α by ηβα.

Anything satisfying properties (1)-(4) is called an abstract root system, and in fact these

properties will be all we need.

Property (4) implies that

ηβα = 2
(β, α)

(α, α)
= 2 cos θ

||β||||α||
||α||2

= 2 cos θ
||β||
||α||

∈ Z.

In particular, we have that ηαβηβα = 4 cos2 θ is an integer, and in particular, it could only be

0, 1, 2, 3, 4. So even here, we can see that the geometry of root systems is incredibly rigid,

since this restricts the allowed angle between roots to a finite set of angles. Now the case

ηαβηβα = 4 happens when cos2 θ = 1, i.e. cos θ = ±1, and thus β = ±α, which is a trivial

case. So excluding this trivial case, we put the only possible cases in the following table.

cos θ
√
3/2

√
2/2 1/2 0 −1/2 −

√
2/2 −

√
3/2

θ π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6
ηβα 3 2 1 0 −1 −2 −3
ηαβ 1 1 1 0 −1 −1 −1

||β||/||α||
√
3

√
2 1 not defined 1

√
2

√
3

In the table, we picked β and α so that ||β|| ≥ ||α|| or |ηβα| ≥ |ηαβ|. Pictorially, we the

allowed configurations between each two root must be of one of the following forms.

π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6

Now given a root system R and the space it spans E, we can pick a hyperplane not

containing any of the roots, say P . P then partitions our root system into two disjoint

subsets R = R+ ∪R−, we call the elements of R+ the positive roots and elements of R− the

negative roots. We call a root α ∈ R+ simple if it is not the sum of two other positive roots.
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3 Defining the Dynkin diagram

We are now in good shape to define the Dynkin diagram of a root system. The Dynkin

diagram of a root system consists of nodes which correspond to a simple root, i.e. we draw

a “ ” for each simple root. We then connect each node with a number of line depending on

θ, the angle between each simple root:

No lines when θ = π/2,
One line when θ = 2π/3,

Two lines when θ = 3π/4,

Three lines when θ = 5π/6.

Indeed, if we define nβα = ηαβηβα, then the number of lines between two nodes on the

Dynkin diagram is exactl nβα. When we draw the line, we point the arrow from the longer

root to the shorter root. There is no arrow when θ = 2π/3 because both roots are the same

length: ||β||
||α|| = 1. One might also notice that we do not have any acute angles on this list;

this is because the angle between any two simple root cannot be acute which will follow from

axioms of root systems.

Let Σ be the set of positive roots of the root system R. We will now list out some basic

facts about root systems.

Proposition 1. If α, β ∈ Σ, then neither α− β and α + β are not roots.

Proof. If α−β ∈ R, then either α−β ∈ R+ or α−β ∈ R−. If α−β ∈ R+, then α = β+(α−β)

is a sum of two positive roots and if α− β ∈ R−, then β − α ∈ R+, so then β = α+ (β − α)

is a sum of positive roots. Both cases contradict that α, β are simple roots.

If α and β are roots with β ̸= ±α, then we call roots of the form

β − pα, β − (p− 1)α, . . . , β − α, β, β + α, β + 2α, . . . , β + qα

an α-string through β.

Proposition 2. Given an α string as above, then

p+ q ≤ 3,

and in addition p− q = ηβ,α.

Proof. Note that we have that

Wα(β + qα) = β − pα,

and

Wα(β + qα) =

(
β − 2

(β, α)

(α, α)
α

)
− qα,
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so we must then have that

ηβ,α + q = p,

and thus p− q = ηβ,α. Next, for p+ q ≤ 3, just take q = 0, so then p is an integer no larger

than 3.

Proposition 3. Suppose α, β are roots with β ̸= ±α. Then if

(β, α) > 0 =⇒ α− β is a root;

(β, α) < 0 =⇒ α + β is a root.

If (β, α) = 0 , then α− β and α + β are simultaneously roots or nonroots.

Proof. Note that p − q = ηβ,α, and if (β, α) > 0, then ηβ,α is positive, and consequently,

p− q > 0, and consequently, p > 0, i.e. q ≥ 1. Similarly, if (β, α) < 0, then ηβ,α is negative,

implying that q > 0, so q ≥ 1. (β, α) = 0, then p = q, which gives us what we want.

Proposition 4. The angle between two distinct roots cannot be acute, i.e. (β, α) ≤ 0.

Proof. If (β, α) > 0, then α− β is a root, which contradicts the fact that if α and β are two

simple roots then α− β cannot be a root.

Proposition 5. The simple roots are linearly independent.

Proof. We will prove this statement using the following statement: If a set of vectors lie on

one side of a hyperplane such that all the mutual angles are at least π/2, then they must all

be linearly independent.

Proof of the statement:

Let v1, . . . , vn be vectors on the same side of the hyperplane ax > 0, and say that∑
civi = 0.

Then we have that

a
∑

civi = c1(av1) + . . . cn(avn) = 0.

If any ci is nonzero, then there must be coefficients of both positive and negative signs.

Relabel so that c1, . . . , ck are positive and ck+1, . . . , cn are negative. Now since
∑

civi = 0,

we have then that

c1v1 + . . . ckvk = −ck+1vk+1 − . . .− cnvn.

Now, let v =
∑k

i=1 civi and w = −
∑n

i=k+1 civi, but we have that

(v, w) = 0,

which implies that each ci = 0. This establishes the claim.

The dimension n = dimE = dimC h is called the rank of the root system R. The above

claim exactly gives us that |Σ| = n, i.e. there are exactly n simple roots. Σ forming a basis

also tells us that every root α ∈ R can be written uniquely as a(n integral) linear combination

of simple roots. If α ∈ R+, then we can write α a non-negative integral combination of simple

roots. It also follows that no root is a linear combination of simple roots with coefficients of

mixed sign.
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4 Some examples of root systems

4.1 Rank 1

In the case of rank 1, the only possible root system is the following

.

This is the root system of sl2C. Label this root system as (A1). The Dynkin diagram for

this root system is simply

,

i.e. a single node.

4.2 Rank 2

The case that θ = π/2, we get the following root system

.

Label this (A1 ×A1). This is the root system of sl2C× sl2C ≃ so4C. The Dynkin diagram

of this system is

,

so a disconnected graph with 2 nodes. This example illustrates our next definitions and the-

orems, which tells us that root systems and Dynkin diagrams encode a lot of the information

about semisimple Lie algebras. But before we move on to the next section, let us see some

more examples of root systems.

This is called the system (A2). Its Dynkin diagram is

.

This corresponds to the root system of sl3C.
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This is the root system (B2). Its Dynkin diagram is

.

This is the root system of so5C ≃ sp4C.
There is one final rank 2 root system, which we will omit. We move on next section to

see why studying root systems give us so much information about the original semistable

algebras themselves.

5 The point

Recall from the example of (A1 × A1) that it is the union of two orthogonal sets of roots.

This is an illustration of a reducible root system, which define now.

Definition 4. We say that a root system R is reducible if it can be decomposed as an

orthogonal union of two different root systems. That is, if R = R1∪R2 where for any α ∈ R1

and β ∈ R2, we have that

(α, β) = 0.

We say that a root system is irreducible otherwise.

Now, we can state one of the main important reasons why we care about root systems.

Proposition 6. A semisimple Lie algebra is simple if and only if its root system is irre-

ducible.

Proof. A semisimple Lie algebra g is simple if and only if the Killing form B is non-

degenerate. But the root system of g is reducible if and only if B has nontrivial kernel,

which establishes our result.

Corollary 1. A root system is irreducible if and only if its Dynkin diagram is connected.

Proof. A Dynkin diagram is connected if and only if there no orthogonal simple roots, which

is the previous proposition.

This means that in some sense, if we can classify Dynkin diagrams, then we can get a lot

of information on how to classify semisimple Lie algebras.

6 Classification of Dynkin diagrams

We can classify Dynkin diagrams by classifying all the irreducible Dynkin diagrams, since

all Dynkin diagrams will be disjoint unions of these irreducible Dynkin diagrams. We can in

fact construct an entire Lie algebra from its Dynkin diagram, but before that, we must first

understand the structure of possible Dynkin diagrams.
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Theorem 1. The Dynkin diagrams of irreducible root systems are precisely from the follow-

ing list (where n in the following is the number of nodes):

• (An):
. . .

• (Bn):
. . .

• (Cn):
. . .

• (Dn):

. . .

• (E6):

• (E7):

• (E8):

• (F4):

• (G2):

The first four on the list correspond to the following Lie algebras:

(An) ⇝ sln+1C,
(Bn) ⇝ so2n+1C,
(Cn) ⇝ sp2nC,
(Dn) ⇝ so2n C.

And then the exceptional cases (E6), (E7), (E8), (F4), (G2) all correspond to certain excep-

tional Lie algebras e6, e7, e8, f4, g2. We will omit the proof of the theorem as it is too long to

present in the scope of this paper.
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