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Semigroup theory gives us a way to recast certain PDEs into ODEs. We will begin by setting

up some basic theory of (contraction) semigroups, and then highlighting how these techniques can

construct a family of solutions to certain second order parabolic PDEs. We will be following the

treatment presented in Evans [1].

1 Introduction

We start off with in an abstract setting. Let X be a real Banach space, and we have a linear ODE

of the form {
u′(t) = Au(t),

u(0) = g,
(∗)

where A : D(A) → X is a linear map (D(A) ⊂ X being the domain of A), u : R → X and g ∈ X.

Since A is now a linear map of Banach spaces, we could have A be some sort of differential operator.

In such a case, we can recast many PDEs into the form of (∗). Our key problems are then to see

what conditions we need so that we have existence and uniqueness of solutions to (∗) and when

and how can we cast a PDE into the form (∗).
Now classically speaking, if X = Rn, A : Rn → Rn linear, u : R → Rn, and g = u0 ∈ Rn an

initial value vector, then we have that solutions to (∗) look like u(t) = eAtu0. Morally, we also want

solutions to (∗) to be of a similar form in the general setting that we have now. So for now, let

us informally assume that (∗) has a unique solution u(t) = S(t)g for each initial point g ∈ X and

t ≥ 0. For each t, we can view S(t) as a map X → X. Again, morally speaking, we want our

operators S(t) to satisfy properties similar to the exponentials ‘eAt.’ That is, we want the family

{S(t)}t≥0 to satisfy:

(1) Each S(t) : X → X is linear.

(2) S(0) is the identity operator, i.e. S(0)g = g for all g ∈ X.

(3) S(s+ t)g = S(s)S(t)g = S(t)S(s)g for s, t ≥ 0, g ∈ X.

(4) The map t 7→ S(t) is continuous for each t.

Notice now the operators {S(t)}t≥0 now inherit algebraic properties similar to the non-negative

reals [0,∞) by properties (2) and (3).

Definition 1. a) A family of operators {S(t)}t≥0 is a semigroup if it satisfies conditions (1)–

(4) above.
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b) If in addition each S(t) satisfies ||S(t)|| ≤ 1 where || · || is the operator norm, then we say

that {S(t)}t is a contraction semigroup.

The name semigroup comes from the fact that the family {S(t)}t≥0 forms a semigroup in the

algebraic sense: associative multiplication, but no inverse. In fact, property (2) actually ensures

the we have a monoid. It also turns out that contraction semigroups are the actual objects we want

to think about.

2 First properties of contraction semigroups

From here on, assume that S = {S(t)}t≥0 is a contraction semigroup on X. Note that since each

||S(t)|| ≤ 1, each S(t) is a bounded, i.e. continuous operator on X and hence S(t) commutes with

limits for all t ≥ 0.

Definition 2. Define

D(A) =

{
g ∈ X

∣∣∣∣ lim
t→0+

S(t)g − g

t
exists in X

}
and define A : D(A) → X by

Ag = lim
t→0+

S(t)g − g

t
.

We call A the (infinitesimal) generator of the semigroup S.

Theorem 1 (Differential properties of semigroups). Assume g ∈ D(A), then

a) S(t)g ∈ D(A) for all t ≥ 0,

b) AS(t)g = S(t)Ag for all t ≥ 0,

c) t 7→ S(t)g is differentiable for all t > 0, and

d) d
dtS(t)g = AS(t)g.

Proof. For S(t)g ∈ D(A), simply look at the limit

lim
s→0+

S(s)S(t)g − S(t)g

s
. (1)

Now since S(s)S(t) = S(t)S(s), we have that (1) becomes

lim
s→0+

S(t)S(s)g − S(t)g

s
= lim

s→0+
S(t)

(
S(s)g − g

s

)
= S(t) lim

s→0+

S(s)g − g

s
= S(t)Ag.

Now S(t)Ag ∈ X exists since g ∈ D(A) and D(S(t)) = X, so indeed S(t)g ∈ D(A). Notice also

that (1) is exactly the formula for AS(t)g, so this also gives us that AS(t) = S(t)A.

Now we need to see that t 7→ S(t)g is differentiable with the formula that we want. From the

argument above, we have limh→0+
S(t+h)g−S(t)g

h = S(t)Ag, so we need only see what happens when
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h → 0− of the above. But we can also recast limit as limh→0+
S(t)g−S(t−h)g

h , and we want to see

that the above limit goes to S(t)Ag. But this is the same as asking that

lim
h→0+

(
S(t)g − S(t− h)g

h
− S(t)Ag

)
= 0. (2)

Now notice that S(t) = S(t− h+ h) = S(t− h)S(h), so we have that

S(t)g − S(t− h)g

h
= S(t− h)

S(h)g − g

h
,

and that S(t) = S(t)− S(t− h) + S(t− h), which gives us that S(t)Ag = S(t)Ag − S(t− h)Ag +

S(t− h)Ag. Putting everything together, we get that (2) becomes

lim
h→0+

[(
S(t− h)

S(h)g − g

h
− S(t− h)Ag

)
+ (S(t− h)− S(t))Ag

]
= lim

h→0+

[
S(t− h)

(
S(h)g − g

h
−Ag

)
+ (S(t− h)− S(t))Ag

]
Now since t 7→ S(t) is continuous, we have that S(t−h) → S(t) as h → 0 (for t > 0), and similarly,

we know already that (S(h)g − g)/h → Ag as h → 0+, which means that that above limit goes to

0 as h → 0+. Consequently, we have that

lim
h→0+

S(t)g − S(t− h)g

h
− S(t)Ag = 0.

This tells us then that

lim
h→0

S(t+ h)g − S(t)g

h
= S(t)Ag = AS(t)g,

which shows us both that the derivative exists and has the formula we want.

Remark. The map t 7→ AS(t)g is continuous, which implies that the map t 7→ S(t)g is a C1 map

for t ∈ (0,∞).

Theorem 2 (Properties of generators). a) The domain D(A) is dense in X.

b) A is a closed operator.

(A closed means that if (gk) is a sequence in D(A) and gk → g, Agk → v, then g ∈ D(A) and

v = Ag.)

Proof. For g ∈ X, define gt =
∫ t
0 S(s)g ds. Since s 7→ S(s)g is continuous, the limit

lim
t→0+

gt

t
= lim

t→0+

1

t

∫ t

0
S(s)g ds = S(0)g = g.

Now the claim is that gt ∈ D(A) for t > 0. If r > 0, we have that

S(r)g − g

r
=

1

r

[
S(r)

(∫ t

0
S(s)g ds

)
−
∫ t

0
S(s)g ds

]
=

1

r

[(∫ t

0
S(r + s)g ds

)
−
∫ t

0
S(s)g ds

]
.
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Now a change of variables on
∫ t
0 S(r + s)g ds gives

∫ t+r
r S(s)g ds =

∫ t+r
0 S(s)g ds−

∫ r
0 S(s)g ds, so

the above equation becomes

1

r

∫ t+r

t
S(s)g ds− 1

r

∫ r

0
S(s)g ds.

Letting r → 0, the above becomes S(t)g − g. Thus gt ∈ D(A) and Agt = S(t)g − g.

Next, we want that A is a closed operator. Let (gk) be a sequence in D(A) such that gk → g

and Agk → v in X. We need to see that g ∈ D(A) and Ag = v. Now, since d
dtS(t)g = S(t)Ag, we

have that ∫ t

0
S(s)Agk ds = S(t)gk − S(0)gk = S(t)gk − gk.

Now letting k → ∞, we get

S(t)g − g =

∫ t

0
S(s)v ds.

So then dividing by t and taking the limit, we see that

lim
t→0+

S(t)g − g

t
= lim

t→0+

1

t

∫ t

0
S(s)v ds = v.

Now by definition of g ∈ D(A), we get that Ag = v as desired.

3 Resolvents

Let A : D(A) → X be a closed linear operator on X.

Definition 3. a) A real number λ ∈ ρ(A), the resolvent set of A if the operator

λI −A : D(A) → X

is bijective.

b) If λ ∈ ρ(A), the resolvent operator Rλ : X → X is defined by

Rλg = (λI −A)−1g.

The Closed Graph Theorem guarantees that Rλ : X → D(A) ⊂ X is a bounded linear operator.

Furthermore, RλAg = ARλg for all g ∈ D(A).

Theorem 3 (Properties of resolvent operators). a) If λ, µ ∈ ρ(A), we have then

Rλ −Rµ = (µ− λ)RλRµ and RλRµ = RµRλ.

b) If λ > 0, then λ ∈ ρ(A),

Rλg =

∫ ∞

0
e−λtS(t)g dt

and so ||Rλ|| ≤ 1
λ .
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Proof. a)

Rλ −Rµ = (λI −A)−1 − (µI −A)−1

= (λI −A)−1(µI −A)(µI −A)−1 − (λI −A)−1(λI −A)(µI −A)−1

= (λI −A)−1((λI −A)− (µI −A))(µI −A)−1

= Rλ((λ− µ)I)Rµ = (λ− µ)RλRµ.

To see that RλRµ = RµRλ, notice that we can multiply 1 in a different order (from the outside

instead of the inside) to get that Rλ −Rµ = (λ− µ)RµRλ, so we have that

(λ− µ)RλRµ = (λ− µ)RµRλ.

If λ = µ, then the commutation is immediate, but if λ ̸= µ, then we can divide to get what we

want.

b) We have that λ > 0 and ||S(t)|| < 1, so we have that the integral∫ ∞

0
e−λtS(t)g dt

is defined. Let R̃λg be the integral. Then for h > 0, g ∈ X, we have that

S(h)R̃λg − R̃λg

h
=

1

h

(∫ ∞

0
e−λt[S(t+ h)g − S(t)g] dt

)
.

Now looking at ∫ ∞

0
e−λtS(t+ h)g dt,

a change of variables gives us that this is equal to∫ ∞

h
e−λ(t−h)S(t)g dt =

∫ ∞

0
e−λ(t−h)S(t)g dt−

∫ h

0
e−λ(t−h)S(t)g dt.

Substituting in to the equation, we get

1

h

∫ ∞

0
(e−λ(t−h) − e−λt)S(t)g dt− 1

h

∫ h

0
e−λ(t−h)S(t)g dt

=
eλh − 1

h

∫ ∞

0
e−λtS(t)g dt− eλh

1

h

∫ h

0
e−λtS(t)g dt.

Taking the limit as h → 0+ we see that

AR̃λg = lim
h→0+

S(h)R̃λg − R̃λg

h
= λR̃λg − g,

where eλh−1
h → λ by l’Hôpital’s Rule. So we get that g = (λI −A)R̃λg.

Now, if g ∈ D(A), we have that

AR̃λg = A

∫ ∞

0
e−λtS(t)g dt.
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The claim now is that

A

∫ ∞

0
e−λtS(t)g dt =

∫ ∞

0
e−λtAS(t)g dt.

First consider

A

∫ k

0
e−λtS(t)g dt.

We want to see that A
∫ k
0 e−λtS(t)g dt =

∫ k
0 e−λtAS(t)g dt. Approximate

∫ k
0 e−λtS(t)g dt by a

Riemann sum
N∑
i=1

e−λτi(ti − ti−1)S(τi)g,

where PN = (0 = t0, t1, . . . , tN = k) is a partition of [0, k], and each τi ∈ [ti, ti−1]. Now, we have

that since each S(τi)g ∈ D(A) and D(A) is a vector subspace of X, the Riemann sum is in D(A)

as well, so we have that

A

(
N∑
i=1

e−λτi(ti − ti−1)S(τi)g

)
=

N∑
i=1

e−λτi(ti − ti−1)AS(τi)g

makes sense and is justified. Now, by taking the limit of finer and finer partitions (so say we have

a sequence of partitions (PN ) and we take the limit as N → ∞), we have that

N∑
i=1

e−λτi(ti − ti−1)S(τi)g →
∫ k

0
e−λtS(t)g dt,

and
N∑
i=1

e−λτi(ti − ti−1)AS(τi)g →
∫ k

0
e−λtAS(t)g dt.

A is a closed operator, so indeed,

A

∫ k

0
e−λtS(t)g dt =

∫ k

0
e−λtAS(t)g dt.

Now, letting k → ∞, we get then that by again using the fact that A is a closed operator

A

∫ ∞

0
e−λtS(t)g dt =

∫ ∞

0
e−λtAS(t)g dt.

So we have then that

AR̃λg =

∫ ∞

0
e−λtAS(t)g dt =

∫ ∞

0
e−λtS(t)Ag dt = R̃λAg.

Thus we have that R̃λ(λI −A)g = g for g ∈ D(A). So now since we have that

R̃λ(λI −A)g = g and (λI −A)R̃λg = g,

we get then that (λI −A) is a bijection with inverse R̃λ = Rλ and therefore λ ∈ ρ(A).
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4 Characterization of generators of contraction semigroups

The following theorem characterizes generators of contraction semigroups.

Theorem 4 (Hille-Yosida). Let A be a closed, densely defined linear operator on X. A is the

generator of a contraction semigroup {S(t)}t≥0 if and only if

(0,∞) ⊂ ρ(A) and ||Rλ|| ≤
1

λ
for λ > 0.

Proof. The forward direction (i.e. assuming A generates a semigroup) follows from the previous

theorem.

So now suppose A is closed, densely defined linear operator on X and (0,∞) ⊂ ρ(A) and

||Rλ|| ≤ 1/λ for λ > 0. We want to build a contraction semigroup with A as its generator. Define

Aλ = −λI + λ2Rλ = λARλ (the last equality coming from (λ2I − λA)Rλ = λI). This operator Aλ

will be our approximation for A.

For Aλ to be an approximation, we should have that Aλg → Ag as λ → ∞ for g ∈ D(A). Now

since λARλg − g = ARλg = RλAg, and ||λRλg − g|| ≤ ||Rλ||||Ag|| ≤ 1
λ ||Ag||, we have then letting

λ → ∞, λARλg → g for g ∈ D(A). Now, since ||λRλ|| ≤ 1 (so Rλ is continuous) and D(A) is

dense, we deduce then that λRλg → g as λ → ∞ for all g ∈ X (by first approximating g and then

letting λ → ∞). Now if g ∈ D(A), then we have that Aλg = λARλg = λRλAg → Ag as λ → ∞,

which is what we want.

Now that we have an approximation for A, we want to somehow go from A to get our semigroup

element S(t). To do that, we are going to go first from Aλ to an operator Sλ(t). Define Sλ(t) =

etAλ = et(−λI+λ2Rλ). We can then rewrite

et(−λI+λ2Rλ) = e−λteλ
2tRλ = e−λt

∞∑
k=0

(λ2t)k

k!
Rk

λ.

Now, since ||Rλ|| ≤ 1
λ , we have then that

||Sλ(t)|| ≤ e−λt
∞∑
k=0

(λ2t)k

k!

1

λk
=

∞∑
k=0

λktk

k!
= e−λteλt = 1.

Thus, we get a contraction semigroup {Sλ(t)}t≥0 from Aλ. The semigroup is generated by Aλ with

D(Aλ) = X (since limt→0+
Sλ(t)g−g

t = limt→0+
etAλg−g

t = Aλg for all g ∈ X).

Let λ, µ > 0 (and so λ, µ ∈ ρ(A)), and so RλRµ = RµRλ. Because of this commutation

relationship, and Aλ = λARλ, we have then that AλAµ = AµAλ (since everything commutes in

the expression). Since Aλ and Aµ commute, we have then that AµSλ(t) = Sλ(t)Aµ for each t > 0.

Now, we want to compute Sλ(t)g − Sµ(t)g. Notice now that∫ t

0

d

ds
(Sµ(t− s)Sλ(s)g) ds = Sµ(t− t)Sλ(t)g − Sµ(t− 0)Sλ(0)g = Sλ(t)g − Sµ(t)g.

Now,
d

ds
(Sµ(t− s)Sλ(s)g) = −S′

µ(t− s)Sλ(s)g + Sµ(t− s)S′
λ(s)g,
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and since S′
λ(t) = Sλ(t)Aλg and everything commute, we have that

−S′
µ(t− s)Sλ(s)g + Sµ(t− s)S′

λ(s)g = Sµ(t− s)Sλ(s)Aλg − Sµ(t− s)Sλ(s)Aµg,

and thus

Sλ(t)g − Sµ(t)g =

∫ t

0
Sµ(t− s)Sλ(s)(Aλg −Aµg) ds.

Taking norms of both sides, we see then that

||Sλ(t)g − Sµ(t)g|| ≤
∫ t

0
||Sµ(t− s)||||Sλ(s)||||Aλg −Aµg|| ds ≤ t||Aλg −Aµg||.

Now because Aλg → Ag for each g ∈ D(A), we have then that ||Aλg − Aµg|| → 0 as λ, µ → ∞.

This means then that for each t ≥ 0, the limit limλ→∞ Sλ(t)g exists for g ∈ D(A). Call this limit

S(t)g. Since ||Sλ(t)|| ≤ 1, the limit exists for all g ∈ X and uniformly for t on compact subsets of

[0,∞). {Sλ(t)}t≥0 is also a contraction semigroup on X since we can take the super over ||g|| ≤ 1

on

||S(t)g||X = lim
λ→∞

||Sλ(t)g||X

and see that indeed ||S(t)|| ≤ 1.

Finally, we need to now show that A is the generator of {S(t)}t≥0. Let B be the generator of

{S(t)}t≥0. We want to then see that A = B. First, note that

||Sλ(s)Aλg − S(s)Aλg|| ≤ ||Sλ(s)||||Aλg −Ag||+ ||(Sλ(s)− S(s))Ag||,

and since ||Aλg − Ag|| → 0 as λ → ∞ for g ∈ D(A) and ||Sλ(s) − S(s)|| → 0 as λ → ∞, we have

then that the right hand side of the above inequality goes to 0 as λ → ∞ for g ∈ D(A), and thus

Sλ(s)Aλg → S(s)Ag. Next, note that we have

Sλ(t)g − g =

∫ t

0

d

ds
(Sλ(s)g) ds =

∫ t

0
Sλ(s)Aλg ds.

Taking the limit as λ → ∞, we get then that

S(t)g − g =

∫ t

0
S(s)Ag ds

for g ∈ D(A). This means that the limit

Bg = lim
t→0+

S(t)g − g

t
= Ag

for g ∈ D(A) and so D(A) ⊂ D(B). Now if λ > 0, then λ ∈ ρ(A) ∩ ρ(B). (λI − B)(D(A)) =

(λI − A)(D(A)) = X. So we have that (λI − B) |D(A) is bijective and from here we deduce that

D(A) = D(B). Therefore A = B, i.e. A is the generator of {S(t)}t≥0.
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5 Application to second order parabolic PDEs

Now that we have some theory about semigroups, we can now move on to apply them to study

second order parabolic PDEs. Consider the following boundary value problem
ut + Lu = 0 in U × [0, T ],

u = 0 on ∂U × [0, T ],

u = g on U × {t = 0},

(∗∗)

where U is a bounded open set with smooth boundary. Assume that L has the divergence form

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +
n∑

i=1

bi(x)uxi + c(x)u,

and that it satisfies the uniform ellipticity condition and has smooth coefficients that do not depend

on t. We are going to use semigroup methods to study such an equation.

To use semigroup methods, first let X = L2(U), and set D(A) = H1
0 (U) ∩ H2(U) and define

Au = −Lu for u ∈ D(A). Now A is an unbounded linear operator on X. We have an energy

estimate

β||u||2H1
0 (U) ≤ B(u, u) + γ||u||2L2(U)

for constants β > 0, γ ≥ 0 and B the bilinear form associated to L.

Definition 4. Let γ ∈ R. A semigroup {S(t)}t≥0 is called γ-contractive if ||S(t)|| ≤ eγt for t ≥ 0.

Using similar methods as the Hille-Yosida Theorem, it can be seen that a closed, densely define

operator A generated a γ-contractive semigroup if and only if

(γ,∞) ⊂ ρ(A) and ||Rλ|| ≤
1

λ− γ
for all λ > γ.

Theorem 5 (Second-order parabolicc PDE as semigroups). The operator A generates a γ-contraction

semigroup on L2(U).

Proof. We need to see that A satisfies the conditions above. The D(A) given is clearly dense in

L2(U), so we need now that A is closed. Let (uk) be a sequence in D(A) with uk → u and Auk → f

in L2(U). Now we have the following H2 estimate on the uk’s:

||um − un||H2 ≤ C(||Aum −Aun||L2 + ||um − un||L2)

(where all the spaces are restricted to U). This holds for all m and n. Now, since uk → u and

Auk → f in L2, this means then that the sequence (uk) is Cauchy in H2 and so uk → u in H2.

Therefore u ∈ D(A). Furthermore, since uk → u, we have that Auk → Au in L2 and so f = Au.

So indeed A is a closed operator.

We next need to check the resolvent conditions. Now we know that for each λ ≥ γ, the boundary

value problem {
Lu+ λu = f in U,

u = 0 in ∂U
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has a unique weak solution u ∈ H1
0 (U) for each f ∈ L2(U). By elliptic regularity, we have that u

must also be in H2, and so u ∈ H2 ∩H1
0 = D(A). We can then rewrite the above equation to be

λu−Au = f

using the fact that we defined Au = −Lu. This implies that λI −A : D(A) → X is a bijection for

λ ≥ γ, and so (γ,∞) ⊂ ρ(A) as wanted.

Now we want the bound on ||Rλ||. To do that, consider the weak problem

B(u, v) = λ(u, v) = (f, v)

for each v ∈ H1
0 (U), where (·, ·) is the L2(U) pairing. Set u = v and use the energy estimate to get

that for λ > γ

(λ− γ)||u||2L2(U) ≤ ||f ||L2(U)||u||L2(U).

Since u = Rλf , we have the estimate

||Rλf ||L2 ≤ 1

λ− γ
||f ||L2

Taking the sup over ||f ||L2 ≤ 1, we get then that ||Rλ|| ≤ 1
λ−γ as desired.

As we can see here, semigroup theory tells us how find a family of solutions to such parabolic

PDEs. Furthermore, from the proof of the Hille-Yoside Theorem, we actually have a very explicit

way of constructing solutions to such PDEs.

6 My additions

In the the Introduction, I added clarification of the abstract setting with the example of ODEs

in Rn, which highlights how semigroup theory is really a way to make sense of ‘eAt’ but in the

more abstract setting. Right after the definition of semigroup, I added clarified the reason for

the name semigroup. I also added additional justification on why S(t) commute with all limits

as the first sentence in Section 2. In the proof of Theorem 2, I added additional clarification

about the change of variables employed in the proof of part a). In the proof of Theorem 3, I

supplied the proof of part a). Furthermore, in the proof of part b), I supplied the justification of

A
∫∞
0 e−λtS(t)g dt =

∫∞
0 e−λtAS(t)g dt via Riemann sums.
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