
Zariski’s Main Theorem

1 Introduction

Zariski’s Main Theorem, in the formulation that we present here is in essence a statement

about the connectiveness of fibers, however the main essence of Zariski’s Main Theorem is

in fact about the so-called Theorem on Formal Functions which is a theorem which connects

cohomology of small ‘Hausdorff’-like neighborhoods (i.e. small neighborhoods that we see in

analysis) with stalks of sheaves. Going through this route will allow us to see some beautiful

constructions and learn about a central tool from cohomology theory.

2 Preliminary definitions

We will be following the treatment found in Hartshorne [3]. Hartshorne’s treatment of

Zariski’s Main Theorem uses the language of schemes. Using this language will help simplify

many of our arguments, so we will use it. We will try to use as little machinery of this

subject as possible, and in fact we can get away with assuming that all the spaces we talk

about are just plain old (projective) varieties (perhaps with some extra points added to the

space). To begin, we will try to cover ‘quickly’ some of the advanced technology that we

want to use. As a disclaimer, for the sake of length of this document, we will not provide

full proofs for many of the background results and intermediate lemmas needed for the full

proof of either Zariski’s Main Theorem, nor the Theorem on Formal Functions.

2.1 Schemes

Let A be a commutative ring with 1. We define SpecA to be the set of all primes ideals of

A. If a is an ideal of A, then we define V (a) = {p ∈ SpecA | a ⊂ p}. We can give SpecA the

data of a topological space by taking closed subsets to be exactly V (a) for a an ideal of A

(this is exactly the same idea as the Zariski topology). These sets form a topology because:

1. V (a) ∪ V (b) = V (ab), and

2.
⋂

i V (ai) = V (
∑

ai).
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We can also give SpecA a sheaf O. For each open set U in SpecA, we define O(U) to

be the set of functions

s : U →
∐
p∈U

Ap

with the conditions that s(p) ∈ Ap, and that for each p ∈ U there is a neighborhood V ⊂ U

of p and elements a, f ∈ Ap such that for each q ∈ V , f /∈ q and s(q) = a/f in Aq. The

above definition is just a very long-winded way of basically describing the regular functions

on an open set of a variety. The following theorem will help us with how to think of this

sheaf of rings.

Proposition 1. Let A, SpecA and O be as above.

a) For any p ∈ SpecA, the stalk Op is isomorphic to Ap.

b) For any element f ∈ A, letD(f) = {p | p /∈ V (f)} = V (f)c. We have thatO(D(f)) ≃ Af .

c) In particular Γ(SpecA,O) ≃ A.

Definition 1. A ringed space is a pair (X,OX) consisting of a topological space X and a

sheaf of rings OX . A morphism of ringed spaces (X,OX) → (Y,OY ) is a pair (f, f#) of a

continuous map f : X → Y and a map f# : OY → f∗OX of sheaves of rings on Y .

(X,OX) is a locally ringed space if the stalk OX,x is a local ring for each x ∈ X. A

morphism of locally ringed spaces is a morphism (f, f#) of ringed spaces such that for each

point x ∈ X, the induced map of local rings f#
x : OY,f(x) → OX,x is a local homomorphism

of local rings. For x ∈ X, the morphism of sheaves

f# : OY → f∗OX

induces homomorphisms of rings OY (U)→ OX(f
−1(U)) for every open U ⊂ Y . If U ranges

over every neighborhood of f(x), then f−1(U) ranges over a subset of all neighborhoods of

x. Taking direct limits, we have that

OY,f(x) = lim−→
U

OY (U)→ lim−→
U

O(f−1(U))→ OX,x.

So by composing maps, we get a map OY,f(x) → OX,x we need this to be a local homomor-

phism: if φ : A → B is a map of local rings, mA and mB are the local rings of A and B

respectively, then φ−1(mB) = mA.

Now we have that (SpecA,O) is a locally ringed space, and this construction is functorial

in the following sense:

If f : A → B is a map of rings, then we get a map SpecB → SpecA given by q 7→
f−1(q), and furthermore the morphism (SpecB,OSpecB)→ (SpecA,OSpecA) is a morphism

of locally ringed spaces (and in fact all such morphism of locally ringed spaces is induced by

a homomorphism A→ B).

Now with all of these preliminary terminology out of the way, we can finally define

schemes.
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Definition 2. An affine scheme is a locally ringed space (X,OX) which is isomorphic

as locally ringed spaces to (SpecA,O) for some ring A. A scheme is a locally ringed

space (X,OX) in which every point has an open neighborhood U such that (U,OX |U) is

isomorphic to (SpecA,O) for some ring A (i.e. X is covered by affine schemes). We call X

the underlying topological space of the scheme, and OX the structure sheaf.

2.2 Properties of schemes

We will now give some properties of schemes (which we will need later on).

Definition 3. A scheme (X,OX) is connected if X is connected as a topological space,

and similarly it is irreducible if X is irreducible.

Definition 4. A scheme X is integral if for all open U ⊂ X, OX(U) is an integral domain.

Definition 5. A scheme X is locally noetherian if it can be covered by open affine

subsets SpecAi where each Ai is noetherian. X is noetherian if it is locally noetherian and

compact. Equivalently, X is noetherian if it can be covered by finitely many SpecAi, each

Ai noetherian.

Now we have to be a bit careful with this definition because it could be a priori that

X can be covered by another affine cover {Uj} such that each Uj = SpecBj and that not

every Bj is noetherian: we do not specify that every affine open subset of X has to be the

spectrum of a noetherian ring. It is also not obvious that every affine noetherian scheme

is the spectrum of a noetherian ring. It turns out that being noetherian is actually a local

property, so these concerns are not too bad.

Proposition 2. A scheme X is locally noetherian if and only if for every open affine subset

U = SpecA, A is a noetherian ring. In particular, an affine scheme A = SpecA is noetherian

if and only if A is noetherian.

Definition 6. A scheme X is normal if all of its local rings are integrally closed domains

(in their field of fractions), i.e. these are normal domains.

Definition 7. A morphism f : X → Y of schemes is locally of finite type if there exists a

covering of Y by open affine subsets Vi = SpecBi, such that for each i, f−1(Vi) can be covered

by open affine subsets Uij − SpecAij, where each Aij is a finitely generated Bi algebra. f is

of finite type if in each f−1(Vi) can be covered by a finite number of the Uij.

Definition 8. A closed immersion is a morphism f : X → Y of schemes such that f

induces a homeomorphism of X with a closed subset of Y , and furthermore the induced

morphism of sheaves f# : OX → f∗OX of sheaves on X is surjective.

Now in the world of schemes, we have this fibered product of schemes. That is, say we

have maps X → S and Y → S of schemes. Then we have this fibered product of schemes

X×SY , which is defined in the usual way. This product is universal and unique up to unique

morphism.
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Definition 9. Let f : X → Y be a morphism of schemes and let y ∈ Y be a point. Let k(y)

be the residue field of y and let Spec k(y) → Y be the natural morphism. Then we define

the fiber of the morphism f over the point y to be the subscheme

Xy = X ×Y Spec k(y).

The fiber Xy is homeomorphic as topological spaces to f−1(y) so we can identify these two

objects together.

Now we need to define some more properties of morphisms of schemes.

Definition 10. Let f : X → Y be a morphism of schemes. Consider the pullback X ×Y X,

which gives us the following commutative diagram.

X ×Y X X

X Y

p2

p1

f

f

There is a unique morphism ∆ : X → X ×Y X such that pi ◦ ∆ = id. We call this the

diagonal morphism. We say that the map f is separated if ∆ gives a closed immersion,

and in this case we also say that X is separated over Y . A scheme X is said to be separated

if it is separated over SpecZ.

2.3 Proj and projective morphisms

So Spec allowed us to construct affine schemes, which we can view as some kind of augmen-

tation of affine varieties. However, we also have projective varieties, and in fact we wish also

to define projective morphisms. First we begin with Proj.

Let

S =
⊕
d≥0

Sd

be a graded ring. The irrelevant ideal of S is the ideal of elements of positive degree

S+ =
⊕
d>0

Sd.

Then we define

ProjS = {p ⊂ S homogenous prime ideal such that S+ ̸⊂ p}.

We can endow ProjS with the Zariski topology in an analogous way to how we gave SpecA

the Zariski topology for a ring A. And similarly, we can turn ProjS into a scheme by giving

it a structure sheaf O in much the same way as we endowed SpecA with a sheaf.
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Definition 11. We define the projective n-space over a ring A to be Pn
A = ProjA[x0, . . . , xn]

(this is analogous to the construction of Pn
k). If A→ B is a morphism of rings, then we get

a corresponding morphism of affine schemes SpecB → SpecA, and then we have that

Pn
B ≃ Pn

A ×SpecA SpecB,

(this construction can be thought of as a change of coordinates from A to B). In particular,

since Z is the initial object in the category of rings, we always have a morphism Z→ A for

any A and thus Pn
A ≃ Pn

Z ×SpecZ SpecA. This construction generalizes to arbitrary schemes.

Definition 12. Let Y be any scheme, the projective n-space over Y , denoted Pn
Y is

Pn
Z ×SpecZ Y . A morphism of schemes f : X → Y is projective if it factors into a closed

immersion i : X → Pn
Y for some n followed by the projection Pn

Y → Y , i.e. the following

diagram commutes.

X Pn
Y

Y

f

i

2.4 Sheaf of modules

Another important object which we will need for Zariski’s Main Theorem are sheaves of

modules. In particular we will need the ideas of quasi-coherent and coherent sheaves.

Definition 13. Let A be a ring, and M an A-module. M can be turned into a sheaf M̃ on

SpecA in a similar way to the structure sheaf on SpecA.

Here is also an analogous theorem on this sheaf of modules to what we had for the

structure sheaf.

Proposition 3. Let A be a ring, M an A-module, M̃ the sheaf associated to M on X =

SpecA. Then

a) M̃ is an OX module;

b) for each p ∈ X, the stalk (M̃)p ≃Mp;

c) for any f ∈ A, the Af module M̃(D(f)) ≃Mf and in particular M̃(X) = Γ(X, M̃) = M .

This sheaf of modules will be the model for quasi-coherent sheaves. What you should

have in your head when you think about quasi-coherent sheaves are vector bundles, and

perhaps sections of vector bundles.

Definition 14. Let (X,OX) be a scheme. A sheaf of OX modules F is quasi-coherent

if X can be covered by affine open sets Ui = SpecAi such that for each i, there is an Ai

module Mi with F |Ui
≃ M̃i. F is coherent if in addition, each Mi is a finitely generated

Ai module.
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An important class of coherent sheaves are the sheaves OX(q) for q ∈ Z. These are

defined as OX(q) =
⊗qOX(1), so now we need to explain what OX(1) is. So first we need

to consider a graded ring

S =
⊕
d≥0

Sd.

We define the module S(1) as the module obtained by giving S a new grading. More

specifically, the degree d elements of S(1) are given by

S(1)d = Sd+1.

Then we define OX(1) = S(1)∼, i.e. we sheafify this module. In general, we have that

OX(n) ≃ S(n)∼.

2.5 Some blurb about derived functors

We know that given a coherent sheaf F , we can find an injective resolution I •

0→ F → I0 → I1 → . . .

Forgetting about F , we get a co-chain complex

0→ I0 → I1 → I3 → . . . .

Then we define the i-th right derived functor RiF to be the i-th cohomology of this

chain complex. That is, we let di : I i → I i+1 and then define RiF = ker di/ im di−1 (after

sheafifying the latter).

2.6 Flatness

One more important notion we need from scheme theory is the notion of flatness. Recall

that a module M is flat over some ring R if − ⊗R M is an exact functor. A module map

f : A→ B is a flat morphism of rings if f makes B into a flat A-module.

Definition 15. Let f : X → Y be a morphism of schemes and F be a quasi-coherent sheaf

of OX modules.

1) f is flat a point x ∈ X if OX,x is flat as a OY,f(x)-module (by the natural induced map

of f).

2) f is a flat morphism if it is flat at each point x ∈ X.

3) F is flat over Y at a point x ∈ X if Fx (the stalk) is a flat OY,f(x) module via the

natural map f#OY,f(x) → OX,x.

4) F is flat over Y if it is flat at every point x ∈ X.

Flatness is important for our purposes mainly because in some sense it commutes with

cohomology. This will be an important lemma for the proof of the Theorem on Formal

Functions, and we will state it in the proof of the Theorem itself.
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2.7 Completions

One final piece of background construction that we need are completions from commutative

algebra. Completions are one of the central ideas of the Theorem on Formal Functions. For

a more thorough treatment of completions, see either Aityah-MacDonald [1] and Eisenbud

[2].

Let R be an abelian group, and let R = m0 ⊃ m1 ⊃ m2 ⊃ . . . be a descending filtration.

The completion of R with respect to mi is denoted as R̂ and is defined by

R̂ = lim←−R/mi

= {(g1, g2, g3, . . .) ∈
∏
i

R/mi | gj ≡ gi mod mi for all j > i}.

This construction is very analogous to the completion of a metric space by taking equivalence

class of Cauchy sequences, and we can think of each element of R̂ in a similar fashion as an

equivalence class of Cauchy sequences.

Now we need some conditions for completions to play nice with homological algebra,

since as is, the inverse limit is only left exact, so completion is only left exact. So quickly

lets define inverse systems. An inverse system of (say abelian groups) is a collection (An)

with homomorphisms φn′,n : An′ → An for n′ ≥ n such that for each n′′ ≥ n′ ≥ n we have

that

φn′,n ◦ φn′′,n′ = φn′′,n.

So then the inverse limit lim←−An consists of sequences (an) ∈
∏

nAn such that φn′,n(an′) = an
for all n′ ≥ n. This system satisfies the Mittag-Leffler condition if for each n, there is n0 ≥ n

such that for all n′, n′′ ≥ n0,

φn′,n(An′) = φn′′,n(An′′)

as subgroups of An (so if we continue the analogy with sequences, this kind of sounds like

that eventually the tail of the sequence is going to be contained in some neighborhood of the

limit). So the important fact about satisfying the Mittag-Leffler condition is that it makes

lim←− into an exact functor.

Proposition 4. Let

0 An Bn Cn 0
fn gn

be a short exact sequence of inverse systems (this means that fn and gn respects the inverse

system morphisms). Then we have that

1. if Bn satisfies the Mittag-Leffler condition, then so does Cn, and

2. if An satisfies the Mittag-Leffler condition, then the inverse limit is exact, i.e. the

sequence

0→ lim←−An → lim←−Bn → lim←−Cn → 0

is exact.
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3 Theorem on Formal Functions

Now with the preliminary definitions out of the way. We are now ready to tackle the Theorem

on Formal Functions. Let f : X → Y be a projective morphism of noetherian schemes. Let

F be a coherent sheaf on X and y ∈ Y is a point. Now we want to look at some ‘Hausdorff’

like neighborhood near each such y, and moreover we would like to perhaps also look at the

preimage of such ‘Hausdorff’ neighborhoods. Since Zariski open sets are so large, we can

only approximate such small neighborhoods. So we define

Xn = X ×Y SpecOy/m
n
y .

Now recall that Oy is a local ring and my is its max ideal. This gives us a filtration Oy ⊃
my ⊃ m2

y ⊃ . . . which we can use to take a completion Ôy. Now this completion we can think

of the set of convergent power series around the point y, and thus we can think of Spec Ôy as

a small Hausdorff-like neighborhood around the point y. Correspondingly, Xn can then be

thought of as some sort of “thickened fiber” over the point y. For n = 1, we can identify X1

with the fiber Xy (or f−1(y)). Now we have natural maps that make the Cartesian square

commute.

Xn X

SpecOy/m
n
y Y

f ′

pn

f

Define Fn = p∗nF , then there are natural maps for each n

Rif∗(F )⊗Oy/m
n
y → Rif ′

∗(Fn).

Now there is a handy theorem about the right hand side that we can use.

Proposition 5. Let X be a noetherian scheme, and let f : X → SpecA be a morphism of

schemes. Then for any quasi-coherent sheaf F on X, we have

Rif∗(F ) ≃ H i(X,F )∼.

So the above turns into a map

Rif∗(F )⊗Oy/m
n
y → H i(Xn,Fn)

since f ′
∗ is a map from noetherian X to affine scheme SpecOy/m

n
y . But now both sides are

inverse systems (in n), so we can take inverse limits and get a natural map

̂Rif∗(F )y → lim←−H i(Xn,Fn).

Now a priori, this is only an approximation of ̂Rif∗(F ), but it turns out that this approxi-

mation is actually an isomorphism—this is the magic of the Theorem of Formal Functions.
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Theorem 1 (Theorem on Formal Functions). Let f : X → Y be a projective morphism of

noetherian schemes, let F be a coherent sheaf on X, and let y ∈ Y . Then the natural map

we had above
̂Rif∗(F )y → lim←−H i(Xn,Fn)

is an isomorphism for all i ≥ 0.

The proof of this theorem relies on a type of induction argument on sheaves over noethe-

rian schemes.

Proof. Since f is a projective morphism, let us first embed X into Pn
Y for some N and

consider F as a coherent sheaf on PN
Y . So this is now just the same case as considering

X = PN
Y .

Lemma 1. Let f : X → Y be a separated morphism of finite type of noetherian schemes.

Let F be a quasi-coherent sheaf on X and let u : Y ′ → Y be a flat morphism of noetherian

schemes. So we get the following cartesian square

X ′ X

Y ′ Y.

g

p

f

u

Then for all i ≥ 0, there are natural isomorphisms

u∗Rif∗(F ) ≃ Rig∗(p
∗F ).

Now let A = Oy, and make the flat base extension SpecA → Y (i.e. a flat morphism

u : SpecA→ Y as in the above). So this really reduces our problem to the cause Y = SpecA,

and y is the generic/closed point of Y . So we have that from the above lemma, u = id by

our reduction, g = f ′ and p = pn, so we have then that

id∗Rif∗(F ) = Rif∗(F ) ≃ Rif ′
∗(p

∗F ) = Rif ′
∗(Fn).

Now using the fact that we have f : X → Y is now a map to affine scheme Y = SpecA, and

F is quasi-coherent, we get that

Rif∗(F ) ≃ H i(X,F )∼,

and

Rif ′
∗(Fn) ≃ H i(Xn,Fn)

∼.

So we can just restate our result to be an isomorphism of A-modules

̂H i(X,F ) lim←−H i(Xn,Fn).
∼
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Now first we establish the result for F = OX(q) for some q ∈ Z on X = PN
A (PN

Y is now

PN
A ). So now Fn becomes OXn(q) for Xn = PN

A/mn . Now it is a result that we have to take

on faith that

H i(Xn,Fn) ≃ H i(X,F )⊗A A/mn

for each n. So by definition of completion, we get that

̂H i(Xn,Fn) = lim←−H i(Xn,Fn) ≃ lim←−H i(X,F )⊗ A/mn = ̂H i(X,F ).

This proves the theorem for O(q). This also holds for finite direct sums of O(qi) since

everything distributes over finite direct sums.

Now that we established the theorem of O(q), we can prove it now for arbitrary coherent

sheaves on X. We will use a descending induction argument on i. Now for i > N , both sides

are 0, so assume the theorem is proven for i+ 1.

Now since we are dealing with noetherian schemes, something magical happens. We refer

to the following lemma.

Lemma 2. Let X be projective over a noetherian ring A. Then any coherent sheaf F on

X can be written as a quotient of a sheaf E , where E =
⊕
O(ni) for ni ∈ Z.

So let F now be a coherent sheaf. Let E be as in the above lemma, and let R be the

kernel so that we get the short exact sequence of sheaves

0→ R → E → F → 0.

Now we can tensor the above with OXn to define Rn = R ⊗OXn and En = E ⊗OXn . Since

tensoring is only right exact, we now have a right short exact sequence

Rn → En → Fn → 0

of sheaves on Xn for each n. Now define Tn to be the image and Sn to be the kernel of the

map Rn → En. This gives us short exact sequences

0→ Sn → Rn → Tn → 0

and

0→ Tn → En → Fn → 0.

Now consider the following diagram:

̂H i(X,R) ̂H i(X,E ) ̂H i(X,F ) ̂H i+1(X,R) ̂H i+1(X,E )

lim←−H i(Xn,Rn) lim←−H i+1(Xn,Rn)

lim←−H i(Xn,Tn) lim←−H i(Xn,En) lim←−H i(Xn,Fn) lim←−H i+1(Xn,Tn) lim←−H i+1(Xn,En)

α1

α2 α3

α4

α5

β1 β2
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The top row of this diagram comes from completing the associated long exact sequence

of homology that we got from the sequence 0 → R → E → F → 0. Since these are all

coherent sheaves, each H i(X, ) is a finitely generated A-module in that line, so completion

is exact and thus the first row of the diagram is exact. The bottom row comes from long

exact sequence that you get from the sequence 0 → Tn → En → Fn → 0 and then inverse

limits. These modules are by construction finitely generated A/mn modules so we have that

they satisfy the descending chain condition. Such modules satisfy the so-called Mittag-Leffler

condition which basically means that inverse limits is an exact functor on such modules, thus

the last row is exact.

Now the maps α1, . . . , α5 are the maps from the theorem. We have that α2 and α5 are

isomorphisms because E =
⊕
OX(qi), and we have established the theorem already for such

sheaves. α4 is an isomorphism by the induction hypothesis (in fact this also implies that

α5 is an isomorphism). Now β1 and β2 are the maps that are induced by the sequence

0 → Sn → Rn → Tn → 0. We want to see that these two induced maps are indeed

isomorphisms.

To see that βi’s are isomorphisms, look at the sequence 0 → Sn → En → Tn → 0.

Taking cohomology of this sequence, and passing to the inverse limit, we get

. . .→ lim←−H i(Xn,Sn)→ lim←−H i(Xn,En)→ lim←−H i(Xn,Tn)→ . . . ,

and this sequence is exact because all the modules are finitely generated so satisfy the Mittag-

Leffler condition. So then if each lim←−H i(Xn,Sn) = 0, then lim←−H i(Xn,En)→ lim←−H i(Xn,Tn)

would be an isomorphism. To see this, we want to see that for any n, there is n′ > n such

that the map of sheaves Sn′ → Sn is the zero map. Now X is a noetherian scheme, and

noetherian schemes are (quasi-)compact, so the question is really local on X (since X is a

finite union of noetherian affines we can just look at each affine piece separately). So say

that X = SpecB. Denote by R,E, Sn the B-modules corresponding to the sheaves R,E ,Sn

(i.e. global sections) and let a = mB the ideal m in B. Now R is the kernel of the map

E → F , so R is a submodule of E and that since Sn is the kernel of the map Rn → Tn or

really the kernel of the map Rn → En, so

Sn = ker(R/anR→ E/anE).

So Sn is the preimage of anE, i.e.

Sn = (R ∩ anE)/anR.

Now it is a result from commutative algebra that there is n′ > n such that

R ∩ an
′
E ⊂ anR,

which would imply that the map Sn′ → Sn is 0, which implies that the map Sn′ → Sn is 0

also.
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Now that we have that β1, and β2 are isomorphisms, lets summarize what we know

now about the diagram. We have that α2, α4, α5 are isomorphisms, and β1 and β2 are

isomorphisms, which implies that β2α4 form an isomorphism as well. From here we are

going to appeal to the 5-lemma. α2 and β2α4 are surjetive, and α5 is injective, thus we

have that α3 is surjective. But F is an arbitrary coherent sheaf on X, so this holds for all

coherent sheaves on X. R is a coherent sheaf on X, so this must hold for R also, hence

α1 is surjective as well. So this implies that β1α1 is surjective. So β1α1 is surjective, while

α2 and β2α4 are injective, which implies that α3 must be injective as well. This proves the

theorem!

Corollary 1. Let f : X → Y be a projective morphism of noetherian schemes, and assume

that f∗OX = OY . Then f−1(y) is connected for every y ∈ Y .

Proof. Suppose for contradiction that f−1(y) = X ′ ∪ X ′′ as a disjoint union of two closed

sets X ′ and X ′′. So then for each n we have that

H0(Xn,OXn) = H0(X ′
n,OXn)⊕H0(X ′′

n,OXn).

So then by the theorem we have that

Ôy = ̂(f∗OX)y = lim←−H0(Xn,OXn)

= lim←−(H
0(X ′

n,OXn)⊕H0(X ′′
n,OXn)).

Since H0 are just rings and inverse limits distribute over (finite) direct sums of rings, we

have then that

Ôy ≃ lim←−H0(X ′
n,OXn)⊕ lim←−H0(X ′′

n,OXn).

But Ôy is a local ring, so it cannot be the direct sum of two rings. Indeed, suppose that

(R,m) is a local ring such that R ≃ R1 ⊕R2, then we have that (1, 0) + (0, 1) = 1 ∈ R, but

on the other hand (0, 1) · (1, 0) = 0 ∈ R, so they are nonunits and are thus contained in m,

but 1 /∈ m, so impossible.

Theorem 2 (Zariski’s Main Theorem). Let f : X → Y be a birational projective morphism

of noetherian integral schemes, and assume that Y is normal. Then for every y ∈ Y , f−1(y)

is connected.

Proof. By the previous corollary, we need only show that f∗OX = OY . Now f−1(y) being

connected is a local property, so we can assume that Y = SpecA (i.e. y is in a single

affine chart). Then f∗OX is a coherent sheaf of OY algebras (since we have a ring map

f# : OY → f∗OX), so B = Γ(Y, f∗OX) = H0(Y, f∗OX) is a finitely generated A module.

But A and B are integral domains with the same quotient field and since Y is normal, A is

integrally closed (normal domain), thus B = A, but since Y is affine, this implies then that

f∗OX = OY .

What does this theorem say? Intuitively this means that every such birational morphism

only has one branch (think in terms of complex analysis, e.g. x 7→ x2). This has applications

in for instance the resolution of singularities.
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