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1 Introduction

Module of differentials are a way of bringing calculus techniques into the world of algebraic

geometry. In manifold theory, we often ‘linearize’ manifolds by considering vector bundles on

the manifold. In particular, the tangent and cotangent bundles of a manifold are of particular

interest. In algebraic geometry, we do not have a baked-in notion of differentiability and so

it takes a bit more work to get these calculus techniques to work. Here, I will lay out the

basic notions of modules of differentials along with some first properties. I will be following

the treatments found in Eisenbud [1] and I will sometimes refer to Hartshorne [2] for certain

insights from geometry.

2 Definitions and basic notions

Definition 1. Let S be a ring, M an S-module. A map (of abelian groups)

d : S →M

is called a derivation if it satisfies the Leibniz rule

d(fg) = d(f)g + fd(g) for f, g ∈ S.

If S is an R-algebra, then d is called R-linear if it is in addition a map of R-modules. We

will note the set of all R-linear derivations S →M by DerR(S,M).

The set DerR(S,M) carries a natural S-module structure by

s · d : f 7→ s · d(f) for s ∈ S, d ∈ DerR(S,M), f ∈ S.

The following are some familiar examples of derivations that we have seen before:

d : C1(Rn) → Ω1(Rn),

any vector field X on Rn,

any vector field X on a smooth manifold M ,

1



d : C∞(M) → Ω1(M) for some smooth manifold M .

In the algebra setting, we could take S = M = k[x, y] for example, and we have a deriva-

tion given naturally by ∂
∂x

: k[x, y] → k[x, y]. This derivation is k[y]=linear, so ∂/∂x ∈
Derk[y](k[x, y], k[x, y]). We further have that Derk[y](k[x, y], k[x, y]) is a free k[y]-module of

rank 1, generated by ∂/∂x.

Now in the geometric case, given an affine variety X ⊂ An, we can take its coordinate

ring S = k[X] = k[x1, . . . , xr]/I(X). It turns out then that Derk(S, S) will be the set of

algebraic tangent vector fields on X, i.e. sections of the ‘tangent bundle’ TX.

For any derivation d, we have that d(1) = d(1 · 1) = d(1)1 + 1d(1) = 2d(1), and hence

d(1) = 0. Further, d is R-linear if and only if d(a) = 0 for all a ∈ R.

Definition 2. If S is an R-algebra, then the module of Kähler differentials of S over R,

written ΩS/R is the S-module generated by the set {d(f) | f ∈ S} subject to the relations

d(fg) = d(f)g + fd(g) (Leibniz rule),

d(af + bg) = ad(f) + bd(g) (R-linearity)

for a, b ∈ R, f, g ∈ S. We will often abbreviate df instead of d(f). The R-linear derivation

d : S → ΩS/R is called the universal R-linear derivation.

Remark. This should really remind you of differential forms.

The universal derivation and ΩS/R satisfy the following universal property: Given any

S-module M and R-linear derivation e : S → M , there is a unique S-linear morphism

e′ : ΩS/R →M such that the following diagram commutes.

S ΩS/R

M

d

e
e′

So this means that we have an isormorphism DerR(S,M) ≃ HomS(ΩS/R,M), and so really

studying derivations from S to M is the same as studying the module of differentials.

Viewing the module of differentials in the geometry world, we have that R would corre-

spond to some base scheme X an S would correspond to a scheme Y over X, and R → S

becomes Y → X. Now instead of a module of differentials, we now have a sheaf ΩY/X of

relative differentials on Y . Now this is analogous to the case in smooth manifolds where we

have the sheaf Ω1 of differential 1-forms on M .

If S is generated as an R-algebra by elements f1, . . . , fs, then ΩS/R would be generated

by df1, . . . , dfs. If f = F (f1, . . . , fs) is an element of S, where F ∈ R[x1, . . . , xs], then by

repeatedly using the product rule, we find that df is a linear combination of the dfi’s. This

tells us that ΩS/R is a finitely generated S module when S is a finitely generated R-algebra,

despite the fact that we defined ΩS/R as a quotient of a module with very many generators.

The above argument gives us our first example, also.

2



Example 1. If S = R[x1, . . . , xr] is the polynomial ring over R with r variables, then

ΩS/R =
⊕r

i=1 Sdxi, the free module generated by the dxi’s.

Proof. Since S is generated as an R-algebra by the xi’s, ΩS/R is generated as an S-module

by the dxi and there is a surjection Sr → ΩS/R taking the i-th basis of Sr to dxi (by the

above argument).

Now for the other direction, note that ∂/∂xi is an R-linear derivation S → S and thus

by universal property we have an S-module map ∂i : ΩS/R → S mapping dxi to 1 and the

other dxj to 0. Putting all these maps together, we get the inverse map

ΩS/R Sr.


∂1

...
∂r



2.1 Functorial properties of differentials

Going from an algebra S over R to the module of differentials ΩS/R is actually functorial in

the following sense. We start off with the category of objects that are the following diagram

S

R

, i.e. algebras over a ring, and then the morphisms in this category are commutative

diagrams of the following form
S S ′

R R′

φ

. The functor then sends objects to

ΩS/R

S

d
, and

the commutative diagrams to

ΩS/R ΩS′/R′

S S ′

d

φ

d′
, where the lower arrow φ is the same as

the φ above, and the S-linear morphism ΩS/R → ΩS′/R′ is the one induced by the derivation

d′φ.

Often times in the wild, we will often just take R → R′ to be the identity (i.e. we

can just talk about algebras over k), and we can just think about morphisms of R-algebras

S → S ′. In this case, we just talk about taking S to ΩS/R. We can also replace the data

of the S-linear morphism ΩS/R → ΩS′/R with the equivalent date of a S ′-linear morphism

S ′ ⊗ ΩS/R → ΩS′/R. Also we might also suppress mentioning the universal derivation d

and just just talk about ΩS/R as a functor itself. This functor is often called the relative

cotangent functor. This functor is right exact.
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Proposition 1 (Relative Cotangent Sequence). If R → S → T are maps of rings, then

there is a right-exact sequence of T -modules

T ⊗S ΩS/R → ΩT/R → ΩT/S → 0

where ΩT/R → ΩT/S is given by df 7→ df , and the map T ⊗S ΩS/R → ΩT/R is given by

a⊗ df 7→ adf.

Proof. Notice that ΩT/S and ΩT/R have the same generators except that ΩT/S have more

relations given by df = 0 for f ∈ S. But now look at the image of T ⊗S ΩS/R → ΩT/R, that’s

exactly the kernel of ΩT/R → ΩT/S.

Remark. Yes, one can ask about the homology of such a functor, however we will not go into

this.

In the case that the map S → T is a surjection, then we would have that ΩT/S = 0 since

the S-linear map d : T → ΩT/S would be 0, since dc = 0 for any c in the image of S. In this

situation, we actually get a different but also useful exact sequence.

Proposition 2 (Conormal Sequence). If π : S → T is a surjection of R-algebras with kernel

I, then there is an exact sequence of T -modules

I/I2 T ⊗S ΩS/R ΩT/R 0d Dπ ,

where the map Dπ maps a ⊗ df to adf and d takes f to 1 ⊗ df . The module I/I2 is called

the conormal module of T/S.

Proof. First consider the universal derivation d : S → ΩS/R. Restrict d to I and look at

d(bc) for b ∈ S, c ∈ I. We get

d(bc) = cdb+ bdc,

which tells us that d induces an S-linear map I → ΩS/R/IΩS/R = (S/I)⊗ΩS/R = T ⊗ΩS/R.

Further, taking b ∈ I as well, we see that d(bc) goes to 0 in T ⊗ ΩS/R, so indeed we have a

map

I/I2 → T ⊗ ΩS/R

as desired.

Next, we want to see that the cokernel is given by Dπ. Consider the generators and

relations that define T ⊗S ΩS/R. As a T -module, this is generated by df for f ∈ S subject to

the relations of R-linearity and Leibniz rule. This is the same as the generators and relations

of ΩT/R except that df for f ∈ I are 0 in this new module, which means that the kernel is

exactly the image of I/I2 as we want.
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3 Computation of differentials

Computing differentials is something we actually all already know how to do. For example,

we know how to find the differential form of a smooth function on a manifold, and this is just

the same idea. For our set up, let us consider S to be a finitely generated R-algebra, say S =

R[x1, . . . , xr]/I, and if I = (f1, . . . , fs), then S⊗RΩR[x1,...,xr]/R = S⊗ (
⊕

R[x1, . . . , xr]dxi) =⊕
Sdxi is a free S-module on the generators dxi. By the conormal sequence,

ΩS/R = coker(I/I2 →
⊕

Sdxi)

Now, since I/I2 is a finitely generated S-module (generated by the f i’s), we have a surjection⊕
Sei → I/I2, ei 7→ f i. Composing with the map d : I/I2 →

⊕
Sdxi, we have a map

J :
⊕

Sei →
⊕

Sdxi

which maps ei to
∑

j
∂fi
∂xj
dxj, i.e. J is represented by the Jacobian matrix (∂fi/∂xj)ij. What

this means then is that ΩS/R is just the cokernel of the Jacobian matrix!

Example 2. If S = R[x]/(f(x)), then we have that

ΩS/R = Sdx/(df) = Sdx/(S · f ′(x)dx) ≃ S/(f ′(x)).

Example 3. Let S = R[x, y, t]/(y2 − x2(t2 − x)). In this case, the Jacobian matrix is

J =

−2x(t2 − x) + x2

2y
−2x2t

 =

3x2 − 2xt
2y

−2x2t

 .

From here, we see that ΩS/R is the free S-module generated by dx, dy, and dt modulo the

relation

(3x2 − 2xt)dx+ 2ydy − 2x2tdt = 0.

4 How module of differentials interact with other op-

erations

Proposition 3 (Base change). For any R-algebra R′ and S, there is a commutative diagram

R′ ⊗R ΩS/R

R′ ⊗R S

Ω(R′⊗S)/R′ .

∼

1⊗d

d
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Proof. We will use universal properties to get the vertical maps that we want.

First, note that the map 1⊗d : R′⊗R S → R′⊗RΩS/R is a R′-linear derivation, so by the

universal property of differentials, we have that there is a map Ω(R′⊗RS)/R → ΩS/R, which

sends d(r′ ⊗ s) to r′ ⊗ ds.

For the other direction, note that the composite map

S = R⊗R S R′ ⊗R S Ω(R′⊗S)/R′
d

is an R-linear derivation, which means that using the universal property again, we get a

universal map

ΩS/R → Ω(R′⊗S)/R′

sending ds to d(1 ⊗ s). Now, since Ω(R′⊗S)/R′ is further an R′ ⊗ S module, we can tensor

with R′ to get an R′ ⊗ S-linear map

R′ ⊗R ΩS/R → Ω(R′⊗S)/R′

sending r′ ⊗ ds to d(r′ ⊗ s). This is the inverse of the previous map.

Proposition 4 (Tensor products). IF T =
⊗

R Si is the tensor product of some R-algebras

Si, then

ΩT/R ≃
⊕
i

(T ⊗Si
ΩSi/R)

=
⊕
i

((⊗
R,i ̸=j

Sj

)
⊗R ΩSi/R

)

by an isomorphism α satisfying

α : d(. . .⊗ 1⊗ bi ⊗ 1⊗ . . .) 7→ (. . . , 0, 1⊗ dbi, 0, . . .)

where bi ∈ Si occurs in the i-th place of each expression.

Proof. First note that

T ⊗Si
ΩSi/R =

(⊗
R

Sj

)
⊗Si

ΩSi/R

=

(⊗
R,i ̸=j

Sj

)
⊗R Si ⊗Si

ΩSi/R

=

(⊗
R,i ̸=j

Sj

)
⊗R ΩSi/R.

Now, let

Ω =
⊕
i

((⊗
j ̸=i

Sj

)
⊗R ΩSi/R

)
.
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Write di : Si → ΩSi/R to be the universal derivation on Si. Now, any element t ∈ T may be

written as a finite sum of terms ⊗bi, where only finitely many of the bi ̸= 1. So we have that

only finitely many of the maps

1⊗ di : T =

(⊗
i ̸=j

Sj

)
⊗ Si

are nonzero on t, so we may define a map e : T → Ω to be the sum∑
i

1⊗ di.

Since each of the 1 ⊗ di are derivations, the map e must then also be a derivation. So we

have an induced T -module homomorphism

α : ΩT/R → Ω

mapping d(
⊗

i bi) to e(
⊗

i bi). We want to see then that this α is an isomorphism.

To see that α is an isomorphism, we need to produce an inverse map. To produce an

inverse, note that for each Si, the composite map Si → T → ΩT/R is an R-linear derivation

Si → ΩT/R, and thus by the universal property, we have an Si-linear map ΩSi/R → ΩT/R :

dbi 7→ d(1⊗ bi), where 1 is the identity in
⊗

i ̸=j Sj. Since ΩT/R is a T -module, this extends

to a T -linear map by tensoring, and so we get a map

βi : T ⊗Si
ΩSi/R → ΩT/R

with βi(1⊗dibi) = d(1⊗bi). Summing the βi’s together, we get a map Ω =
⊕

i T⊗Si
ΩSi/R →

ΩT/R that is the inverse of α as desired.

Geometrically, this can be interpreted in the following way. We have two ‘spaces’ X1,

and X2, then locally, the product X1×X2 should look like spectrum of the tensor product of

two rings. We have that looking at the fiber of the (co)tangent bundle at the point (p1, p2) ∈
X1 ×X2, we should have that T(p1,p2)X1 ×X2 be canonically isomorphic to Tp1X1 ⊕ Tp2X2.

Proposition 5. If T = S[x1, . . . , xr] is a polynomial ring over an R-algebra S, then

ΩT/R ≃ (T ⊗S ΩS/R)⊕

(⊕
i

Tdxi

)
.

Proof. Let T ′ = R[x1, . . . , xr]. Write T = S ⊗R T
′, we can apply the above to get that

ΩT/R ≃ (T ⊗S ΩS/R)⊕ (T ⊗T ′ ΩT ′/R).

Now, we have that ΩT ′/R ≃
⊕

i Sdxi, so we have that T ⊗T ′
⊕

i Sdxi =
⊕

i Tdxi. This gives

us what we want.
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Our next goal is to see that module of differentials commute with localization and direct

limits (i.e. colimits). To do that, we first need the notion of coequalizers. Here we only need

the notion for R-algebras.

Definition 3. Given a pair of R-algebra morphisms ψ, ψ′ : S1 → S2, the coequalizer of ψ

and ψ′ is the algebra T = S2/I, where I is the ideal generated by the relations ψ(a)−ψ′(a) = 0

for all a ∈ S1.

Lemma 1. If T is the coequalizer of a pair of maps ψ, ψ′ : S1 → S2 then there is a right

exact sequence of T -modules

T ⊗S1 ΩS1/R T ⊗S2 ΩS2/R ΩT/R 0.
T⊗Dψ−T⊗Dψ′

Proof. By the conormal sequence, we have that ΩT/R is T ⊗S2 ΩS2/R modulo the submodule

generated by the elements d(ψ(a)−ψ′(a)) for a ∈ S1, which is exactly the image of the map

T ⊗Dψ − T ⊗Dψ′.

To see that module of differentials commute with colimits, we will need a basic categorical

fact.

Theorem 1. If coproducts of sets of objects and coequalizers of pairs of morphisms exist in

the category A, then all all colimits of functors from small categories exist in A. Further,

any functor on A that preserves coproducts and coequalizers preserves all colimits over small

categories.

Theorem 2 (Differentials commute with colimits). Let B be a diagram in the category of

R-algebras. Set lim−→B = T (just say that B is a direct system in the category of R-algebras).

If F is the functor from B to the category of T -modules taking an object S to T ⊗S ΩS/R and

a morphism φ : S ′ → S to morphism 1⊗Dφ : T ⊗S (S ⊗S′ ΩS′/R) → T ⊗S ΩS/R, then

ΩT/R = lim−→F.

Proof. It is a fact that colimits are a combination of coequalizers and coproducts (i.e. ten-

sor products). The details of this construction is a bit too involved for the scope of this

report. We have already proven that the construction of module of differentials preserve all

coproducts and coequalizers, so the result follows from these.

From here, we can see that differentials commute with localization.

Proposition 6 (Module of differentials commute with localization). If S is an R-algebra

and U is a multiplicatively closed subset of S, then

ΩS[U−1]/R ≃ S[U−1]⊗S ΩS/R

in such a way that d(1/s) = (−1/s2)ds for s ∈ U .
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Proof. We will start with the case that U = {1, s, s2, . . .}, i.e. powers of s. So we have that

S[U−1] = S[x]/(sx− 1). We see that

ΩS[U−1]/R = (S[U−1]ΩS/R ⊕ S[U−1]dx)/(S[U−1]d(sx− 1))

by combining what happens with S[x] with what happens with quotients. Now, since d(sx−
1) = xds+ sdx and since s is a unit in S[U−1], we see that

ΩS[U−1]/R = (S[U−1]ΩS/R ⊕ S[U−1]dx)/(S[U−1]dx) = S[U−1]ΩS/R,

where dx is identified with −(x/s)ds. Now if we think of x as s−1, then this reads as

(−1/s2)ds, as desired.

The general case follows by a direct limit argument. If B is the diagram of R-algebras

whose objects are localisations S[s−1] for s ∈ U with maps S[s−1] → S[(st)−1] given by

the natural localization maps for s, t ∈ U , then S[U−1] = lim−→B, and so using the fact that

colimits commute with differentials, we have that

ΩS[U−1]/R = lim−→
s∈U

S[U−1]⊗S[s−1] ΩS[U−1]/R = ΩS/R[U
−1] = S[U−1]⊗ ΩS/R.

This result is very nice because it tells us that the sheaf associated to modules of differ-

entials behave exactly as you would expect them to behave.

Proposition 7 (Differentials commute with direct products). If S1, . . . , Sn are R-algebras

and S =
∏

i Si, then

ΩS/R =
∏
i

ΩSi/R.

Proof. If ei is the idempotent of S that is the unit of Si and D is a derivation of S to

S-module M , then Dei = 0 and so

D(eif) = eiDf.

Thus we have that D maps Si = eiS to Mi = eiM and corresponds to a unique map

ΩSi/R → Mi. It follows then that
∏

iΩSi/R has the universal property that characterizes

ΩS/R.

5 Big theorem about modules of differentials

Really the big idea behind this is that we want to detect smoothness of algebraic varieties

of schemes in general. The notion of smoothness of varieties is encapsulated by the notion

of a regular local ring.

Definition 4. A local ring (R,m) is regular if m can be generated by dimR elements.
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This notion corresponds to smoothness because it says that basically the tangent space

at m has the same dimension as the variety.

Definition 5. An (abstract) variety X over an algebraically closed field k is nonsingular

if all its local rings are regular local rings.

The following two theorems describe the relationship between regularity and module of

differentials. We will skip the proofs since they involve more machinery than what can be

done here.

Theorem 3 (Jacobian Criterion). Let S = k[x1, . . . , xr] and I = (f1, . . . , fs) and R = S/I.

Let P be a prime ideal of S containing I and write κ(P ) = K(S/P ). Let c be the codimension

of IP in SP .

(a) The Jacobian matrix

J = (∂fi/∂xj)ij

taken modulo P has rank ≤ c.

(b) If char k = p > 0, assume that κ(P ) is separable over k. RP is a regular local ring if

and only if the matrix J , taken modulo P , has rank exactly c.

Theorem 4. Let S, I, R and c be as before. Assume further now that P is a prime ideal

of S containing I such that κ(P ) = K(S/P ) is now separable over k. RP is a regular local

ring if and only if the module ΩR/k is locally free at P of rank r − c.
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